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Executive Summary 

When the heart beats irregularly, it is known as an arrhythmia. A common 

heart arrhythmia, known as a premature ventricular contraction (PVC), accounts 

for the highest number of non-actionable and false-positive in-hospital patient 

monitoring alarms. Current in-hospital patient monitoring systems do not have the 

capabilities to discern true-PVC alarms from false-alarms, and therefore medical 

professionals experience alarm fatigue, a desensitization to alarms leading to lower 

quality of care. This presents an opportunity to apply sophisticated machine 

learning methods to improve the accuracy of these alarms so that only true-PVC 

alarms are generated to alert medical professionals. Our team explored several 

machine learning approaches to handle and classify electrocardiogram (ECG) signal 

data from two data sets: the famous MIT-BIH Arrhythmia labeled data set, and UC 

San Francisco’s massive unlabeled data set. Our best performing model was a 

2-layer neural network which achieved a test set accuracy of 93.64%. We also 

explored transfer learning and individual heartbeat classification using various 

approaches such as anomaly detection using K-means clustering. Based on our 

findings, future work should focus on using neural networks to classify individual 

heartbeats. 
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I. Motivation

 
Alarm fatigue in nursing staff compromises quality of care.

 
 

In modern intensive care units (ICUs), patients are connected to multiple 

electronic devices that monitor vital signs of health. While these bedside monitors 

make it possible to observe and quantify each moment of a patient’s health status, a 

growing problem for clinical care staff is that the overwhelming majority of alarms 

are false-positives. This inaccuracy is problematic since responding to each alarm 

taxes the limited time and attention of available nurses (Hu et al., 2012, 913). The 

overload of alarms has been linked to avoidable patient deaths in cases where 

caregivers were so desensitized to monitor alarms that they failed to register and 

respond to actual life-threatening conditions (Wallis, 2010).  

 

There are many reasons for the high number of false positive alarms. First, there are 

a multitude of monitors involved in each patient’s care. It is standard for patients to 

be connected to 4 to 12 electrocardiogram (ECG) leads, blood pressure devices, 

blood oxygen saturation (SpO2) devices, and respiration monitors, producing 7 or 

more continuous streams of data (Drew et al., 2014).  Compounding the large 

volume of data generated by each patient is the the high proportion of false-positive 

alarms. Reasons for the high false-positive rate include inappropriate tailoring of 

alarm thresholds and monitor settings to the individual patient, patient health 

conditions that are stable and non-actionable from a care perspective but abnormal 

from a monitoring perspective, algorithm deficiencies within the monitoring 

technology itself, hypersensitivity to typical patient motion, and poor exception 

handling, among others (Drew et al., 2014). For example, persistent false-alarms are 

triggered when a patient has a pacemaker and the ECG isn’t configured to the  
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Figure 1: False alarm frequency by arrhythmia type  showing Premature Ventricular Contractions (PVC) as most 

frequent alarm in comparison to several categorizations including Heart rate (HR) and Atrial fibrillation (Afib). 

Technical alarms refer to any silent alarm used for low-risk rhythms  (Drew et al. 2014). 

 

pacemaker mode. While it is easy for a nurse to correctly interpret the 

artificially-induced heart rhythms, the patient monitor will continuously alarm. 

 

Vital sign monitoring is a critical component of enabling effective and timely care, 

and true positive alarms are essential in mobilizing a rapid response in 

life-threatening scenarios. Indispensable as monitors and alarms are to caregivers, 

the challenge has become a task of improving the alarm algorithms, such that the 

false-positive rate is reduced without impacting the false-negative rate.   

 

In one study conducted at UCSF, premature ventricular contraction (PVC) alarms 

accounted for 33% of total alarms (Drew et al., 2014). Despite being so frequent, PVC 
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alarms are non-actionable due to the landmark 1989 Cardiac Arrhythmia 

Suppression Trial (CAST) that showed “antiarrhythmic therapy was associated with 

more deaths than placebo” (CAST Investigators 1989). However, even though PVC 

alarms are non-actionable and extremely frequent, under certain circumstances 

they can be an early warning sign of life-threatening arrhythmias such as torsade de 

pointes (Drew et al., 2014). 

 

Since completely ignoring or disabling PVC alarms isn’t an option, if the false-positive 

rate for PVC alarms specifically can be reduced, then it would have an outsize 

impact in reducing the overall false-positive rate and alarm burden for ICU nurses. 
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II. Literature Review

 
Many machine learning and data mining methods have been applied to 
false alarms suppression. 

 

 

Over the past five years, researchers have made steady progress, first in 

amassing datasets that can quantify the scope of false-positive alarms in clinical 

care settings, and then in using those datasets in developing data science 

algorithms to classify arrhythmias and correct for false-positives. 

 

In 2012, Hu et al. published the first study to directly mine patient monitor alarm 

data (Hu et al., 2012, 914). In this study they mined alarm data to find frequent 

combinations of alarms that preceded code blue events (events where a patient 

requires immediate resuscitation), and evaluated their results using 4-way analysis 

of variance (ANOVA) on a test set of “223 adult code blue and 1768 control patients” 

(Hu et al., 2012). They were able to achieve a true-positive rate “between 66.7% and 

90.9%” with their SuperAlarm, while reducing the number of false-positive alarms to 

“between 2.2% and 11.2% of regular monitor alarms” (Hu et al., 2012). 

 

In 2014, Hu collaborated with another team of researchers to publish a model that 

“suppresses false positive ventricular tachycardia (VT) alarms without resulting in 

false-negative alarms”, using only the ECG waveforms from the MIMIC II dataset 

(Salas-Boni et al., 2014, 775). This L-1 regularized logistic regression classifier 

suppressed false alarms by 21% when evaluated against the MIMIC II dataset, and 

by 36% when evaluated against the UCSF & General Electric dataset; in both cases 

no true positive alarms were suppressed (Salas-Boni et al., 2014). 
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In the same year, two more papers were published. One including laboratory test 

results as a feature in the SuperAlarm model (Bai et al., 2014), and another 

publishing an observational study that is truly remarkable (Drew et al., 2014). In the 

Drew study, a team of nurses went through extensive training in order to review and 

label a dataset of 2,558,760 alarms as true or false positives. A dataset of this scale 

and quality was a milestone, enabling data science and machine learning models to 

train with much higher quality and validity.  

 

Several additional papers have been published by the SuperAlarm group 

performing additional time-series and classification analysis (Bai et al. 2016) and 

linear discriminant analysis (LDA) (Shahriari et al., 2016).   

 
 
Automatic arrhythmia classification has achieved cardiologist-level 
accuracy using convolutional neural networks.

 
 

In recent years, neural networks (CNN) have largely displaced the need to 

design convolution kernels manually. A neural network is a directed and acyclic 

computational graph, which may include convolution, matrix multiplication, function 

maps, and other transformations. It also includes a way to “reverse” each operator 

by differentiation with respect to internal parameters of the neural net, enabling a 

local search process to find a local optimum over these parameters. The depth, or 

composition of layers, reflects the idea that a basic set of abstract features may be 

combined to represent the signal.  
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Figure 2: AlexNet architecture has been successfully applied to arrhythmia detection[Isin and Ozdalili, 2017] 

 

One prominent application of CNNs to arrhythmia classification was carried out by 

the Stanford Machine Learning Group. They trained a deep CNN, and showed that it 

could be used to distinguish between many types of arrhythmias and beat patterns , 

and even determine if the signal is too noisy to be evaluated [Rajpurkar et al., 2017]. 

Their architecture used over 30 layers of convolution, as well as more sophisticated 

techniques (normalization, dropout, and residual connections) to transform the one 

dimensional signal. By comparing the F1 score (the harmonic mean of precision and 

recall) of the classifier with those of expert cardiologists, Rajpurkar and his team 

showed that their predictions outperformed cardiologists on most of the different 

arrhythmia types and beat patterns. 
 
Other applications of CNNs to cardiac arrhythmias make very heterogeneous 

assumptions which are out of the scope of this paper. Interested readers should see 

(Isin and Ozdalili, 2017), (Yan Zhou et al., 2017), and (Jun et al, 2017). 
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Pre-trained convolutional neural networks are available for fine tuning.
 

 
Because training large CNN architectures is time consuming and risky, many 

researchers in industry have made their work available as pre-trained  

feature-extractors. These include AlexNet (figure 1) and GoogLeNet/Inception 

(Szegedy et al., 2015). Applying these pretrained networks to arrhythmia 

classification has been effective, and experimentation could yield results closer to 

the leading edge of this research. 

 

Overall, cardiac arrhythmia classification has made dramatic gains from both a 

dataset and data science perspective in the past five years. Large, high-quality 

labelled alarm datasets have made it possible to train models with greater 

confidence, and the techniques used to yield more subtle analysis have resulted in 

models that continue to reduce false-positives overall with a variety of tolerances for 

false negatives. The CalCardiac team will continue to investigate advancements in 

this field by focusing on a specific type of alarm: premature ventricular contraction 

(PVC). PVC is the most frequent false positive alarm and source of fatigue in nurses 

and hospital staff (Drew et al., 2014). 
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III. Industry Analysis 
 

 

 

United States hospitals and medical device manufacturers would be 

interested in the CalCardiac PVC classifier
 

 

The CalCardiac capstone project operates in a space where modern 

techniques are being deployed in the more traditional healthcare industry. 

IBISWorld analysts forecast that over the next five years, the US hospitals industry 

will experience an “annualized rate of 3.3% to $1.2 trillion dollars” [IBISWorld, 

2018a], while responding to healthcare reform, and reimbursement trends 

(IBISWorld, 2018a). Revenue growth is forecasted to be supported by the continually 

aging population, healthcare reform such as Medicaid and other government or 

similarly related insurance (38.2% of 2017’s industry revenue), and a private health 

insurance (45.2% of 2017’s industry revenue). According to IBISWorld Industry 

Report 62211, “There are no major players in this industry” (IBISWorld, 2018a) and 

therefore hospitals are continually seeking to differentiate themselves amongst 

their competitors as the premiere healthcare provider, while striving to minimize 

operating costs.  

 

Similarly, IBISWorld analysts forecast the medical device manufacturing industry to 

experience an annualized growth of 2.9% to $49.3 billion dollars in revenue by 2022. 

The cardiovascular (CV) device segment of the medical device manufacturing market 

is saturated, and it accounts for 27.7% of the industry revenue (IBISWorld, 2018b). 

Competitors such as Medtronics (38.9% market share) and General Electric 

Company (19%) currently produce similar products with low differentiation and 

room for innovation. 

 

Both the hospitals industry and the medical device manufacturing industry benefit 

from differentiating technologies to increase their competitive edge. This creates a 
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very profitable market to enter as there are motivated buyers and technology 

providers that would be willing to incorporate this valuable service to gain higher 

profitability. 

 

Porter’s Five Forces analysis illustrates both low and high competitive 
forces in the industry for data science improvements to patient 
monitoring.

 
 

Porter’s Five Forces framework consists of five main business-related 
considerations: bargaining power of suppliers and customers, threats of new 
competitors and substitutes, and established rivals with the power of precedent. 
Improvements to bedside monitors are most likely to be adopted by firms invested 
in bedside monitor design and manufacturing, who feel that anticipating user 
requirements is an important aspect of their product.  
 
Because of the novelty of their technology-based suppliers, these companies would 
depend on a large degree of testing, validation, and robustness analysis on the part 
of their underlying infrastructure. In addition, regulatory constraints about patient 
data may make it difficult for users to send crash reports to manufacturers over a 
public network.  

 
Since the demands of customers reflect a high degree of institutional inertia and risk 
aversion, buyers of hospital equipment may require certification by oversight 
agencies or other forms of liability awareness, before purchasing bedside monitors 
with hype-driven components. Once the initial skepticism is overcome, however, the 
inertia can work in favor of the companies offering differentiated and novel bedside 
monitors. 

 
Currently, human operators must frequently attend to alarms generated by patient 
monitors, which detracts from their ability to relate with patients on a more 
personal level. This situation, which serves as a substitute to a learning-integrated 
monitor, is not preferable to a more sophisticated monitor. Other substitutes have 
not emerged.  

 
Competition is posed by many companies invested in machine learning and artificial 
intelligence research, as well as academic institutions working on the same thing. 
Additionally, there are more specialized companies and organizations working 
specifically in health care. As a result, it is likely that new competition will emerge. 
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Finally, currently established bedside monitors do not offer integrated machine 
learning, and so the threat of established competitors is less pronounced than that 
of new entrants.  
 
 

 

Figure 3: Porter’s five forces diagram demonstrates how CalCardiac can add value to  the hospital alerting platform industry. 
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Intelligent functionality should be adopted by patient monitor 
manufacturers with the power and economic incentive to improve their 
product offerings.

 
 

The end-users for this product are the millions of caregivers and patients 

who could benefit from automatic interpretation of electrocardiogram (ECG) signals. 

Medical device manufacturers would be motivated to incorporate this technology 

into their product offering to differentiate amongst a competitive and saturated 

industry. Even if device manufacturers lag to incorporate the technology into the 

devices themselves, hospitals can implement this technology unilaterally in their 

Electronic Medical Record Systems or in a custom software platform to increase 

quality of care and reduce medical errors.  
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IV. Technical Contributions
 

 

ECG arrhythmia labels are based on physiological events.

 
 

Supervised learning models require a reliable method of generating a true 

label for premature ventricular contraction (PVC). The methods for identifying an 

arrhythmia with a ventricular origin (such as PVC) are well-established by the 

medical community (Malmivuo & Plonsey ,1995.), and rely on several conditions.  

 

 

Figure 4: Diagram of the P,QRS, and T wave archetypes for a single healthy heartbeat (Dubin, 2000, pg.29). These correspond 
to atrial depolarization, ventricular depolarization, and ventricular repolarization, respectively. The atria and ventricles are 
the upper and lower chambers of the heart, respectively. The atrioventricular node and bundle of His conduction pathway is 
shown in yellow. 
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First, there will generally be a widened QRS complex, typically lasting longer than .1 

seconds, on account of the electrical impulse that must propagate through bulk 

cardiac tissue and not along the typical bundle branch pathways. Secondly, the QRS 

complex will occur earlier than would be expected based on the frequency of the 

preceding beats. The previous beats are driven impulses originating at the sinoatrial 

node and thus occur with a well-defined frequency. A PVC impulse has an ectopic 

electrical origin, and so often will have a premature QRS complex. Third, there will 

usually not be a P wave associated with the QRS complex of the PVC contraction. 

This is because the P wave is characteristic of the depolarization of the atria of the 

heart following signal initiation by the sinoatrial node. Due to the ectopic origin of a 

PVC impulse, a P wave is not observed in many cases. The final distinguishing 

feature of a PVC event is a discordant T wave. The T-wave in a normal beat is 

associated with the repolarization of the ventricles. Observed discordance in PVC is 

a result of an abnormal repolarization pathway that often results after an 

atypical-pathway bulk-tissue depolarization of the ventricles. 

 

Figure 5: Example waveforms of PVC heartbeats originating from different ectopic nodes (Dubin, 2000, pg.142). Ectopic 
nodes originate electrical signals like the atrioventricular nodes do, but their placement in the ventricles causes a slower bulk 
myocardial conduction pathway to be followed rather than the bundles of His, leading to interruption in the normal beat 
pattern with a  wide QRS complex and other abnormal indicators on the ECG. 
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Our annotation procedure will rely on these indicators. Expert and non-expert 

annotators are trained according on the same examples and precepts, and studies 

have shown that non-expert annotation based on simple rule-based systems can be  

Positive Indicators  Negative Indicators 

Wide QRS Complex  Reference beats are irregular 

Early R-wave  Absence of 2 or more positive indicators 

No P-wave    

Discordant T-wave    

Compensatory Pause   

Present in at least 4 bipolar leads   

Table 1 : Simple rules are used to identify PVC heartbeats. Beat patterns that are believed to 

have resulted from lead irregularities should to be labelled as artifacts (Dubin, 2000).  

 

very effective for machine learning (Snow et al., 2008). Events that do not exhibit at 

least three of these criteria will not be considered PVC events. ECG records where 

no normal beat pattern can be discerned also cannot be considered to be PVC 

events. 

 

 

Building an annotation utility will help create and expand labelled 
datasets for arrhythmias. 

 
 

Data for this project comes from two sources: MIT-BIH arrhythmia dataset, 

and UCSF 2013-2014 dataset. The MIT-BIH database was annotated by professional 

cardiologists at points along each ECG strip. The annotations fall roughly at each 

R-peak, and indicate one of several categories (Goldberger et al., 2000). 

 

The UCSF 2013-2014 dataset does not have annotations, only ECG strips. The data 

was extracted from UCSF’s database by querying only PVC-labelled alarms, resulting 

in over 10 million alarms. Each record has 10 seconds of ECG recordings across 
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several leads, but they are not professionally annotated to confirm if the recording 

contains a PVC arrhythmia or does not. 

 

 

Figure 6: Example 10-second ECG strip of signal data with a PVC arrhythmia occuring after the fifth 

complex. The complex is premature, the QRS complex is broad, there is no visible P-wave, there is a 

discordant S-T wave, the event can be seen across multiple leads, and there is a compensatory 

pause seen at the sixth normal complex.  

 
In order to train any model, we require labelled training and test data. By building a 

small utility function using Python and Node.js (as seen in the figure below), our 

team can divide up the UCSF dataset into batches of images and attempt to recreate 

the same annotation process that the MIT-BIH arrhythmia dataset used, creating a 

labelled UCSF dataset.  

 

For simplification, the UCSF data will have 3 possible annotations: True-PVC, 

False-PVC, Artifact. This allows our team to quickly iterate through records and 

annotate them for model training. Since we are not subject matter experts, records 

will be annotated by multiple members independently, and consensus on images 

will be formed. 
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Figure 7: A browser-based ECG annotator, built by CalCardiac, helped generate labeled training data. 

19 



 
 

 

The benefit of this annotation utility is that we can expand the MIT-BIH dataset with 

the UCSF data and leverage them both to strengthen our model approaches. 

 
 
Monitor alarms with ECG strips can be simulated by statistical 
processing of community arrhythmia datasets, although caution is 
necessary because of subtle differences.

 
 

The MIT-BIH Arrhythmia Database is one of the earliest raw ECG databases available 

to the public. It contains half-hour excerpts of two-channel ECG recordings from 48 

patients that have been studied by the BIH Arrhythmia Laboratory in the period of 

1975 to 1979 . One of the channels is a modified limb lead (MLII) mostly and other is 

V1. The ECG signals are sampled at 360 samples per second per channel (Moody & 

Mark, 2001). 

 

All 48 records of half-hour ECG signals were sliced into 0.8-second ECG signal strips, 

0.4-second before and 0.4-second after each annotated beat. Here 0.8 second was 

chosen because through exploratory analysis of the ECG signals we found that the 

median time between R-R peaks is about 0.8 second. The resulting dataset consist of 

112,552 samples of 0.8-seconds ECG signals (each has 288 signal values). Of the 

112,552 samples, 105,423 samples were annotated 0 meaning these 0.8-seconds 

ECG signal strips are not PVC beats while 7,129 samples were annotated 1 meaning 

these 0.8-seconds ECG signal strips are PVC beats. 

 

We started with the modeling efforts by first considering the dataset containing the 

entire 111,985 records. The dataset was split into training and test dataset 
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Model  Accuracy  True Positive 
Rate 

False Positive 
Rate 

Baseline  0.9366  0.0000  0.0000 

Logistic - training set  0.9510  0.2949  0.0046 

Logistic - test set  0.9472  0.2500  0.0056 

Logistic (Fourier transform) 
- training set 

0.9442  0.1804  0.0042 

Logistic (Fourier transform) 
- test set 

0.9389  0.1467  0.0070 

Table 2a: prediction results of MIT-BIH dataset using different models 

 

ratio of 0.2. Apart from building the logistic model, we also used fourier 

transformation and then compared the accuracy results. 

 

If all 112,552 observations are to be used for training machine learning models, then 

the baseline model (which predicts every observation to be 0) will have a quite high 

accuracy of 93.67% (as can be seen from the above table). Then it’s hard to tell how 

much a machine learning model can improve the prediction accuracy. So from the 

105,423 observations which were annotated non-PVC, 7,129 observations were 

randomly selected and joined with the 7,129 observations which were annotated 

PVC to form a new smaller dataset. For the smaller dataset, as there are the same 

amount of observations being 0 and 1, the baseline model will have prediction 

accuracy of 50.00% (the prediction accuracy for test set is 50.14% due to splitting of 

the dataset into training and testing subset). 

 

Based on the smaller dataset consisting of 7,129 non-PVC and 7,129 PVC 

observations, logistic regression model, random forest model and a 2-layer fully 

connected neural network were built and the model prediction results are shown in 

Table 2 below. The dataset was splitted into training and testing subset using 0.3 

ratio. 
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The 10-seconds ECG records were also analyzed as part of exploratory data analysis. 

The median time duration between two consecutive R peaks for  patients was found 

by exploring the non PVC 10-second ECG records. For example, for one patient the 

R-R peak time was found to be 0.8 seconds (which is in conformation to the normal 

range of 0.6s - 1). On examining the PVC 10-second ECG signal strip for the same 

patient, it was found that the RR peak difference was more than the median 

difference.  

 

Model  Accuracy  True  
Positive rate 

False  
Positive rate 

Baseline  0.5014  0.0  0.0 

Logistic regression (training set)  0.7415  0.7272  0.2442 

Logistic regression (testing set)  0.7415  0.7342  0.2513 

Random forest (training set)  0.8810  0.7622  0.0 

Random forest (testing set)  0.8167  0.6418  0.0093 

Neural network (training set)  1.0  1.0  0.0 

Neural network (testing set)  0.9364  0.9147  0.0420 

Table 2b: prediction results of small MIT-BIH dataset using different models 

  

The difference between the maximum and minimum peak was also analyzed . This 

corresponds to the difference between the R peak and the S peak.  For non PVC 10 

second records  the median difference was found to be 1.37 mV whereas for the 

PVC record the median difference was found to be 3.4 mV.  

 

These two basic data exploratory techniques would eventually help us select 

features for the model and further improve the accuracy of the model.  

 
 
Consistent input data are essential for intelligent algorithms.
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The MIT-BIH and UCSF datasets are differ by lead placement, sampling rate, 

equipment, and channel typology. Generalization of machine learning algorithms 

away from the training set requires that input data represent samples from a 

consistent distribution, so it is necessary to create an analogy, as well as perform 

standardization or segmentation, when inputting data from new sources. In order to 

maintain this data fidelity, for example, it is useful to downsample high-frequency 

data. For this downsampling, we used the  Fourier resampling method implemented 

(Pedregosa et al., 2012). The method lends itself to this application due to the 

smoothness of the ECG signal. 

 
 
Modern and classical techniques can capture high dimensional 
structure in spatial and temporal data.

 
 

Statistical data modelling techniques can be grouped into two major 

categories (Hinton, 2007). The first type is characterized by low dimension (less than 

100 dimensions), noisiness, lack of structure, and parsimonious modelling. In these 

datasets, simple models such as linear separation or linear fit are sufficient, and the 

main problem is to distinguish signal from noise. The study of such methods falls in 

the domain of classical statistics. The second type is characterized by high 

dimension (more than 100 dimensions), high degrees of complex structure, and 

high capacity modelling (using, for example, neural networks). The main problem of 

this second type is finding a good way to capture the complex high dimensional 

structure without overfitting artifacts of the dataset. The study of these methods 

falls in the domain of machine learning (and intersects computer vision as well). 

 

Under the statistical paradigm, the PVC classification problem may require a small 

number of data features such as the distance between R peaks (R-R interval), QRS 

width, and R-S slope.  
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Figure 8: Bootstrapped heartbeats from a clean ECG display complex, high-dimensional structure which can be 
visualized using dimension reduction techniques (Maaten and Hinton, 2008). The color indicates a whether a 
heartbeat is marked as PVC. Note that the binning process of the dataset doesn’t represent the variability in 
non-pvc heartbeats. 

 

Under the machine learning paradigm, raw ECG samples (anywhere from 200-500 

per second) are treated as independent dimensions. These very high-dimensional 

points may then be fed directly as input to a well-designed neural computer, 

mechanistic model (wavelet transform with a human-selected basis), or dimension 

reduction technique (such as multidimensional scaling, stochastic neighbor 

embedding, or principal components analysis). The specific procedure would 

depend on the modelling choices pursued in a particular context. 

 

As a first attempt to understand the structure of the ECG signal, we extracted a 

single channel (channel I) from a single patient (number 213) in the 

MIT-BIH-Arrhythmia database, sampled at 360 hertz. From the annotations, we 

generated a random subset of windows (width=400 samples), which are assumed to 

be centered on r-peaks of the heartbeat. These windows were then sampled with 

repetition from class-label buckets, and transformed into two dimensions using 

t-distributed stochastic neighbor embedding. TSNE attempts to preserve high 

dimensional neighborhoods using a probabilistic interpretation of transformed data 
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  Total Accuracy  Precision (PVC)  Recall (PVC) 

In-sample, Same 
patient, 
bootstrapped 

99.5%  99%  100% 

Out-of-sample, 
Same patient, 
bootstrapped 

96%  95%  97% 

Out-of-sample, 
Same patient, 
All heartbeats 

17%  7%  90% 

Table 3: performance metrics for single patient heartbeat classifier with clean ECG signal. Trained on 
n = 200 randomly sampled heartbeat windows from a single patient. The low total accuracy for all 
heartbeats shows that non-pvc heartbeats (mostly normal) were incorrectly classed as pvc. This 
effectively recreates the problem of false alarms. 

 

 

(Maaten and Hinton, 2008). The resulting plot (see figure 3) shows very good 

separation properties for heartbeats generated this way from the signal. 

 

Based on the degree of separability visible in the above plot, we fit a radial basis 

function support vector machine [Pedregosa et al. 2012] to the raw points. 

Unfortunately, the bootstrapped dataset doesn’t accurately capture the structure of 

heartbeats, even for the same patient! The scores in figure 4 show that the limiting 

class of PVC examples makes it hard to prevent overfitting to data generated 

according to the bootstrap procedure, even if the data don’t intersect. In addition, it 

is crucial that patient we selected had an extremely clean ECG reading with little 

noise. These possibilities make the current model interesting as a baseline because 

it detects a large number of PVCs, but useless in practice due to lack of robustness. 

In essence, this recreates the problem of a high rate of false alarms.
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Figure 9: Accuracy of single-patient-based classifier on other patients in the BIH dataset. This plot shows the 
classifier’s failure to generalize, and the large number of very low accuracy patients suggests that the 
decision boundary learned is actually misleading. 

 

Generalization to new patients presents a major challenge. 

 
Figure 5 shows the shapes of lead-I heartbeat windows for a variety of 

patients. These examples demonstrate the variability in the MIT-BIH dataset. Firstly, 

although the labels are frequently related to R-peaks, they are not well-centered 

enough to provide a true point of reference. This observation may be related to the 

inherent ambiguity of choosing a particular point for the R-peak, and some appear 

to adopt the convention of placing the annotation immediately before QRS complex. 

Secondly, the patient we selected for training captures only a tiny fraction of the 

possible shapes of various arrhythmias, normal heartbeats, and noisy signals, which 

can unexpectedly thwart induction by the classifier. This observation is called the 

curse of dimensionality, and appears when the training examples do not reflect a 

larger structure which would enable generalization. Thirdly, the bootstrapping 

procedure we used limited the number non-PVC examples dramatically. As a result, 
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the classifier captured a large number of PVCs, but did not distinguish them well 

from non-PVCs. Again, this effort effectively recreated the problem of false-alarms. 

 

Figure 10: heartbeat windows from a variety of patients in the MIT-BIH dataset demonstrate the differences in 
scale/intensity of the signal, position, and shape of PVC and non-PVC measurements. Normalization and 
segmentation could create more comparable data (Goldberger et al., 2000).  
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Anomaly detection with K-Means clustering algorithms can be used for 
QRS complex detection in time series ECG signal data.

 
 

In 1985, Jiapu Pan and Willis J. Tompkins published a paper in IEEE in March 

1985 titled “A Real-Time QRS Detection Algorithm” (Pan and Tompkins, 1985) . They 

developed an algorithm to detect QRS complexes in ECG signals in real-time by 

performing various analyses and filtrations on the signals. This approach showed 

that ECG signal analysis could be done in real-time and illustrated how it could be 

done.  

 

Clustering algorithms are another approach for anomaly detection in time-series 

data. After studying the MIT-BIH dataset, as well as the UCSF dataset, we were 

looking for an anomaly, in this case it was PVC, in a stream of ECG signals behaving 

normally. Similar to the approach that Pan and Tompkins took, we tried a multiple 

step approach to see if we could teach a model to identify normal behaviour 

heartbeats or anomalies, and then to determine if the anomaly behaved like a PVC 

arrhythmia or another arrhythmia. In order to test out this method, the first step 

would be to use K-means clustering to learn the various waveform shapes of normal 

heart beats, and then the algorithm would try to recreate newly presented data with 

these cluster centroids and monitor the reconstruction error rate. If the newly 

presented data exceeded a threshold of reconstruction error it would indicate that 

the new signal data has a different waveform shape than what was learned to be 

normal, and therefore would have a high probability of being an anomaly. The 

second step would be to use K-means clustering on known PVC waveforms and then 

re-test the new data to see if it could be reconstructed with PVC learned waveform 

shapes. If it could be, then there would be a high probability that the new 

anomalous data would be a PVC-type arrhythmia as opposed to another anomalous 

arrhythmia like atrial fibrillation. 
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The approach first read in the ECG signal data, and split the signal into time 

windows that took snapshots of the signal of a predetermined length. The window 

would then “slide” a finite amount of time to reveal a new, overlapping window 

segment of the waveform. In order to normalize the waveform in each window 

segment so that they would not create artificial errors during reconstruction, each 

waveform captured in a window would be multiplied by a sine wave which forces 

each window to start and end at 0, eliminating the possibility that the algorithm 

learns fictitious waveforms due to windows not starting and ending at a normalized 

point, and instead only learn the core of the window waveform shape in the center 

of each window.  

 

The next step once the windows are created are to use K-Means clustering to teach 

the model what waveform shapes are to be considered normal, creating a learned 

library of waveforms. This is where fine-tuning is required as the number of clusters 

affects end performance and training time. Using the clusters, we can split up new 

data to reconstruct them with the waveform library, and monitor the reconstruction 

error rate. If the error rate surpasses a certain threshold (to be determined by 

testing), then the probability of the data having an anomaly is high.  

 

We are exploring this approach using the MIT-BIH dataset of PVC and normal 

heartbeat waveforms. If it is possible to construct an anomaly detector using just 

normal ECG data, then it will be tested on PVC data to see if the system can discern 

PVC anomalies versus other anomalous waveforms. Finally, it will be tested to see if 

the algorithm can generalize to the UCSF data from a similar channel. 
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Figure 11: Anomaly detection approach using K-Means clustering. Here is the original waveform of a ‘Normal’ 
heartbeat pulled from the MIT-BIH database in blue, with a normalized version of the heartbeat using windowed 
segments of a learned shapes library of ECG wavelets in orange, and finally a reconstruction of the waveform 
using the cluster centroids in green. The reconstruction error (difference between orange and green plots) is then 
computed and can then be used with a threshold detector to raise an alarm if the anomaly exceeds a prescribed 
threshold. 

 
 

 
 
Using the TensorFlow Object Detection API to build an ECG classifier

 
 

Since the objective of this project can be interpreted as identifying a PVC 

waveform in a ECG data, we attempted to build an ECG waveform classifier to 

recognize the PVC waveform shapes from other waveform shapes. Using the 

MIT-BIH labelled dataset, images of PVC arrhythmias and non-PVC heartbeats, an 

image classifier was built using limited training data. Images were created by 

creating a picture of 1 seconds worth of ECG data centered on either a normal or 

PVC heartbeat or another annotated beat. The images were then formatted to be 

used to train a pretrained CNN using open source architecture by leveraging a 
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pretrained model from Google’s Object Detection API for transfer learning and 

training on Google Cloud Computing. 

 

 

     

Figure 12: Using the TensorFlow Object Detection API, Google Cloud Computing, and MIT-BIH dataset to use 
a pretrained model for transfer learning to analyze and detect ECG heartbeats. Left image: plot of isolated 
ECG data from a V1 channel of left bundle branch block beat. Right image is preparing files to run on 
TensorFlow and Google Cloud with Google’s Object Detection API to learn ECG signals and classify them 
bounded in the red box. 
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V. Conclusion  

 
This project originally started out as an effort to identify and suppress PVC alarms in 

ECG signal data; however, as the project unfolded, it evolved to reveal the intricacies and 

challenges across multiple components of this common goal. The dataset provided to our 

group was unlabelled and massive, so without subject matter expertise, a proven model or 

method to perform unsupervised learning on the data, nor the time to label the data to 

perform supervised learning on the data, we had to reevaluate our approach. 

 

While we annotated 3000 UCSF alarms, this was more of an exercise in understanding our 

data, and building up a small, new labelled data set that we could perhaps leverage in the 

future. Without a clear and promising method of leveraging the annotated data, the team 

fell back to a more famous and widely used dataset called the MIT-BIH arrhythmia dataset. 

 

In an effort to maximize concept generation, our team explored numerous models and 

approaches to generate baselines and models to compare and possibly combine in a 

future ensemble model. Efforts on the MIT-BIH dataset included classical signal processing, 

regression, random forest, t-SNE, CNN, K-Means, and transfer learning. Not all have been 

successful, but they are important efforts nonetheless. 

 

The results from our small experiments have been discrete and with varied success, but 

the proof of concept of being able to identify PVC and reliably classify a PVC-type 

arrhythmia versus other ECG signals is there. 

 

Our next steps are to generalize our models to new patients and new types of data 

streams. For example, the MIT-BIH dataset is different in form in comparison to the UCSF 

dataset. Being able to generalize our model to various patients over time and datastreams 

is where we look to focus our future efforts.
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Appendix A: Tables and Figures 
 

Tables 

Table 1  Page 17  List of expert rules for identifying PVC heartbeats. 

Table 2a  Page 21  Performance metrics for classifiers based on 10-second 
windows. (full dataset) 

Table 2b  Page 22  Performance metrics for classifiers based on 10-second 
windows. (small dataset) 

Table 3  Page 25  Performance metric for classifiers based on approximate 
heartbeats. 

 

 

Figures 

Figure 1  Page 5  Histogram of false alarms by type of alarm. 

Figure 2  Page 9  AlexNet CNN architecture. 

Figure 3  Page 13  Porter’s 5 forces for bedside monitor software. 

Figure 4  Page 15  Diagram showing PQRST archetype heartbeat waveform. 

Figure 5  Page 16  Examples of PVC waveforms from different irritable foci. 

Figure 6  Page 18  Example ECG signal from UCSF database. 

Figure 7  Page 21  CalCardiac annotator. 

Figure 8  Page 24  TSNE plot based on bootstrapped patient heartbeat windows. 

Figure 9  Page 26  Accuracy plot of simplistic classifier on other patients. 

Figure 10  Page 27  Example heartbeat windows for multiple patients in MIT-BIH. 

Figure 11  Page 30  K-means approximation of a single heartbeat window. 

Figure 12  Page 31  ECG signal detection using Tensorflow and Google’s Object 
Detection API. 
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